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Empirical Expressions for Fin-Line Design

ARVIND K. SHARMA, MEMBER, IEEE, AND WOLFGANG J. R. HOEFER, SENIOR MEMBER, IEEE

Abstract —This paper presents empirical expressions in closed form for
the design of unilateral and bilateral fin-lines. The guided wavelength and
the characteristic impedance calculated with these expressions agree, typi-
cally, within + 2 percent with values obtained using numerical techniques in
the normalized frequency range 0.35 < b/ < 0.7, which is suitable for
most practical applications.

I. INTRODUCTION

IN-LINES FIND frequent applications in millimeter-
wave integrated-circuit design. This is attributed to
their favorable properties, such as low dispersion, broad
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single-mode bandwidth, moderate attenuation, and compa-
tibility with semiconductor devices. Among various possi-
ble configurations, unilateral and bilateral fin-lines are of
particular interest (see Fig. 1).

To this date, the propagation characteristics of fin-lines
have been obtained with various methods. An early paper
by Meier [1] described the propagating mode as a variation
of the dominant mode in ridged waveguide. His procedure
requires a test measurement to determine the equivalent
dielectric constant of the fin-line structure. This is both
expensive and time consuming. The analysis procedures by
Saad and Begemann [2] and Hoefer [3] are based on ridged
waveguide theory, and provide only an approximate solu-
tion. On the other hand, an accurate description of propa-
gation in fin-lines, such as présented by Hofmann [4], and
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Fin-line configurations. (a) Unilateral fin-hne. (b) Bilateral fin-
line.

Fig. 1.

recently by Knorr and Shayda [5], Schmidt and Itoh [6],
and Beyer and Wolff [7], demands considerable analytical
efforts and invariably leads to complicated computer pro-
gramming. It is, therefore, desirable to have a design
method which combines the flexibility of analytical expres-
sions with the accuracy of numerical techniques. With this
in mind, we have developed the following empirical for-
mulas.

We believe that Meier’s expressions describe the disper-
sion in fin-lines well enough for most practical appli-
cations. But, in order to circumvent the inconvenience of
the required test measurement, we have developed empiri-
cal expressions for the equivalent dielectric constant k, the
cutoff wavelength A, in the equivalent ridged waveguide,
as well as for the cutoff wavelength A ; in fin-lines. We
present the basic approach in Section II, and the detailed
empirical expressions in subsequent sections.

II. THE DERIVATION OF THE DESIGN EXPRESSIONS
Meier’s expressions for guided wavelength A, and char-
acteristic impedance Z, in fin-line are [1]

A=Ak -] (1)

and

Zy=Zoo[ k.~ (A /AY] )

where k_ is the equivalent dielectric constant, and A is the
free-space wavelength. A, and Z, are the cutoff wave-
length and the characteristic impedance at infinite fre-
quency of a ridged waveguide of identical dimensions. In
Meier’s expressions (1) and (2), the term &, is regarded as a
constant and is determined by a single test measurement.
Strictly speaking, it characterizes a fictitious ridged wave-
guide uniformly filled with a dielectric of relative permittiv-
ity k. This first-order approximation is satisfactory only if
the relative dielectric constant of the fin-line substrate is
close to unity, and if the substrate occupies only a very
small fraction of the guide cross section. If, however, ¢, is
larger than 2.5, k, must be considered frequency depen-
dent, and we assume it to have the following general form
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[8]:
k,=k F(d/b,s/a,\,e,). )

k is the equivalent dielectric constant at cutoff given by

kc = (>‘cf/>‘ca)2 (4)

where A, and A, are the cutoff wavelength in the fin-line
and in the equivalent ridged waveguide, respectively. The
correction factor F is determined such that (1) and (2) yield
the results obtained with the rigorous numerical techniques
[41-[9].

In the millimeter-wave range, standard waveguides have
an aspect ratio b/a=1/2. Furthermore, the substrates
most frequently used in this range have a relative dielectric
constant €, = 2.22 (RT—Duroid) or ¢, =3 (Kapton). Ex-
pressions in this paper have therefore been derived for
these parameters in the normalized frequency range of
0.35 < b/ < 0.7 which is suitable for most practical appli-
cations.

III. NUMERICAL EVALUATION OF THE NORMALIZED

CuUTOFF FREQUENCIES

The accurate numerical evaluation of the normalized
cutoff frequencies in fin-lines is accomplished with the
hybrid mode formulation of the spectral domain technique
[4], [5], [9)- In this technique, the Fourier transform of the
dyadic Green’s functions are related to the transform of
the current densities on the conductors and the electric
fields in the region complementary to the conductors, via

the equation
(B, ko) Hip(a,, B, ko) _ {fx(a»]
J(a,)
5)

Hy(a,,B, ko) Hyl(a,,B, ko)
where a,, is the Fourier-transform variable, 8 is the propa-
gation constant, and k, is the free-space wavenumber. £,
E,, J,, and J, are the electric fields in the aperture and the
current densities on the conductors, respectively.

With the application of Galerkin’s procedure and
Parseval’s theorem, we obtain a set of algebraic equations
in terms of unknown constants of the basis functions. At
cutoff, a nontrivial solution for the wavenumber k, is
obtained by setting the determinant of the coefficient
matrix equal to zero and finding the root of the equation.
The numerical values for the normalized cutoff frequencies
evaluated for the dielectric constants €, =2.22 and 3 are
displayed in Tables I and II for unilateral and bilateral
fin-lines, respectively. These values serve as a reference for
other methods of fin-line analysis and are also utilized to
derive the empirical expressions.

E(a,)
E,(a,)

IV. EMPIRICAL EXPRESSIONS FOR THE NORMALIZED
CUTOFF FREQUENCIES

Meier’s expressions require the knowledge of the cutoff
wavelength A, in an equivalent ridged waveguide, ob-
tained by setting ¢, =1. However, in order to keep the
analytical expressions for A, as simple as possible, we
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Fig. 2. Normalized cutoff frequencies in unilateral fin-lines. b/a = 0.5,
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Fig. 3. Normalized cutoff frequencies in bilateral fin-lines. /a = 0.5,

€, =222 and3.

assume that the equivalent ridged waveguide is obtained by
letting the substrate thickness tend toward zero, which
leads to the same expression for A, in the unilateral and
bilateral case. The normalized cutoff frequency (b/A_,) is
then given by

b/, =0245(d/b)'" (6)

which is valid for 1/16 < d/b <1/4 and is accurate to + 1
percent.

For unilateral and bilateral fin-lines, the general expres-
sion for the normalized cutoff frequency (d/ A.s) can be
written in terms of the d /b and s /a

b/A;y=A(d/b) (s/a)’. ™)
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TABLE1
NORMALIZED CUTOFF FREQUENCY b /A . OF THE DOMINANT MODE
IN UNILATERAL FIN-LINES

CUEOFE frequency b/%_ of the Dominant Mode
Normalized Normalized 5757 = —5T5
Thickness Gap Width ‘r - ‘x
s/a da/b SDT Expression SDT Expression
1/2 0.18070 - 0.16269 -
1/4 0.15457 0.15340 0.13908 0.13840
1/4 1/8 0.13505 0.13561 0.12146 0.12233
1/16 0.1209¢6 0.11988 0.10874 0.10814
1/2 0.18210 - 0.17706 -
1/4 0.16140 0.16040 0.14756 0.14673
1/8 1/8 0.13942 0.14085 0.12684 0.12800
1/16 0.12396 0.12369 0.11244 0.11167
1/2 0.20248 - 0.19114 ~
1/4 0.16925 0.16755 0.15799 0.15640
1/16 - 1/8 0.14499 0.14609 ©.13410 0.13502
1/16 0.12796 0.12738 0.11755 0.11657
1/2 0.21049 - 0.20275 -
1/4 0.17698 0.17603 0.16881 0.16766
1/32 1/8 0.15139 0.15283 0.14285 0.14364
1/16 0.13286 0.13268 0.12409 0.12306
TABLE I1

NorMALIZED CUTOFF FREQUENCY b/ A , OF THE DOMINANT MODE
IN BILATERAL FIN-LINES

[ Cutoff frequency b/xc of the Dominant Mode
Normalized Normalized
Thickness Gap Width e, = 2.22 €. = 3.0
s/a a/b

spT Expression sDT Expression

1/2 0.16833 - 0.15079 -
1/4 0.13814 0.13695 0.12401 0.12292
1/4 1/8 0.11779 0.11876 0.10576 0.10689
1/16 0.10387 0.10298 0.09325 0.09296

1/2 0.17973 - 0.16531 -
1/4 0.14489 0.14365 0.13254 0.13149
1/8 1/8 0.12058 0.12154 0.10976 0,11087
1/16 0.10409 0.10283 0.09443 0.09348

1/2 0.1927% - 0.18168 -
1/4 0.15732 0.15577 0.14706 0.14567
1/16 1/8 0.12955 0.13073 0.11999 0.12118
1/16 0.11014 0.10972 0.10123 0.10082

1/2 0.20399 - 0.19623 -
1/4 0.16925 0.16987 0.16159 0.16270
1/32 1/8 0.14110 0.14183 0.13332 0.13409
1/16 0.11941 0.11842 0.11160 0.11051

In the following, the unknown constants appearing in (7)
are given for the range of structural parameters 1/16 <
d/b<l/4and 1/32<s/a<1/4.

For Unilateral Fin- Lines (¢, = 2.22)
A=0.1748

0.16(s/a) """, 1/32<5/a<1/20
P=10.16(s/a)” %"
—0.001In[(s/a)—(1/32)], 1/20<s/a<1/4

g=—0.0836. (8)

For Unilateral Fin- Lines (¢, = 3)
A=10.1495
0.1732(s /a) """,
0.1453(s/a) 1%,
g=—0.1223,

1/32<s5/a<1/10
1/10<s/a<1/4
(9)

For Bilateral Fin- Lines (€, = 2.22)
A=0.15

0.225(s/a)” ", 1/32<s5/a<1/10
0.149(s/a) *®, 1/10<s/a<1/4

g=—0.14.
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For Bilateral Fin- Lines (¢, = 3)
A=0.1255

_[021772(s/a) """, 1/32<s/a<
0.2907—0.3568(s/a), 1/15<s/a<1/4

g =—0.1865. (11)

Tables I and II compare the above expressions and
numerical results obtained with the spectral domain tech-
nique. Results agree within +1 percent, which inspires
confidence in the above expressions. Figs. 2 and 3 display
these results graphically.

1/15
1

V. EQUIVALENT DIELECTRIC CONSTANT

Given the cutoff frequencies in fin-lines and ridged
waveguides of identical dimensions, the equivalent dielec-
tric constant k. at cutoff is calculated with (3). k, is then
obtained by multiplying k_ with a correction factor F. The
expressions for F are as follows.

For Unilateral Fin- Lines (€, = 2.22)
_ [[1.0+0.43(s/a)](d/b)",  1/32<s/a<1/8
1/8<s/a<1/4

(12)

[1.0240.264(s/a)](d/b)"",

where ‘
p;=0.096(s/a)—0.007.

For Unilateral Fin- Lines (¢, = 3)
F=F"+0.25308(b/A)—0.135
1/32<s/a<1/8
1/8<s/a<1/4
(13)

| 1368(s/a)" ™ (d/b)",
[1.122+0.176(s/a)] 2,

where
p,;=0.375(s/a)—0.0233

p,=0.032—3.0[(s/a)—(3/16)].

For Bilateral Fin- Lines (¢, = 2.22)

_0.78(s/a) " (d/b)°'”, 1/32<s/a<1/8
[1.04-0.2(s/a)](d/b)"", 1/8<s/a<l/4
(14)
where
p,=0.152-0.256(s/a).
For Bilateral Fin- Lines (¢, = 3)
F=F'+0.08436(b/\)—0.045
e 0.975(s/a) " ***(d/b)"", 1/32<s/a<1/8
[1.0769—-0.2424(s /a)](d/b)"*, 1/8<s/a<1/4

(15)
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Fig. 5. Effective dielectric constant k, in bilateral fin-lines.
€,=222and 3, b/A =0.3556.

b/a=0.5,

where
Py =0.089+0.288(s/a)
p,=0.16—0.28(s/a).

Figs. 4 and 5 show the typical values of k., computed
with the above expressions at b/A = 0.3556.

VI. CHARACTERISTIC IMPEDANCE

The characteristic impedance of the fin-line has been
presented by Meier [1] in terms of the asymptotic value
Zy, (2), that is, the impedance at infinite frequency of an
equivalent ridged waveguide structure. This impedance can
be defined in many differerit ways. The choice of the
definition depends on the application. For instance, in
Meier’s expression (2), Z,,, is defined on a power-voltage
basis. However, Meinel and Rembold [10] have found that
in the design of fin-line switches it is appropriate to define
characteristic impedance in terms of a voltage and current,
that is

Zy= 7, (16)

where Vj, is the line integral over the electric field between
the fins taken along the shortest path on the substrate
surface, and I, is the total longitudinal surface current in
the structure. This definition was proposed by Hofmann

[4].
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Fig. 6. Cross section of double-ridged waveguide with transverse equiva-
lent network showing the voltage distribution.

In this section, we shall derive an analytical expression
for the characteristic impedance of an equivalent ridged
waveguide structure at infinite frequency. To that end, we
shall calculate the total longitudinal current with a proce-
dure similar to that of Cohn [11], taking into account the
current on the edges of the ridge.

The longitudinal current is equal to the sum of the
respective currents in the three regions of the double-ridged
waveguide structure shown in Fig. 6. The transverse equiv-
alent network and the voltage distribution in the TE,,
mode are also shown there.

A. The Longitudinal Current Between the Ridges

(Region 1): Following the notation of Fig. 6, the voltage
decreases cosinusoidally outwards from the center and can
be expressed as

V(1)=Vycos2zl/A, (17)

where ¥ is the magnitude of the voltage at the center, [ is
the variable distance from the center, and A, is the wave-
length in the transverse direction, which is equivalent to
the cutoff wavelength A, of the air-filled ridged waveguide
given by

A =A== (18)

The voltage at the step is
Vi=V,cosms/A,, (19)

which is obtained setting / = s /2 in (17). Thus, the longitu-
dinal linear current density at the top wall is

.
J(1)= d—;)’COSZWl/}\m

_ [F A
K € A

is the characteristic wave impedance of the TE,, mode in

(20)

where

@1
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the structure. The longitudinal current is then derived as
2 s W,
I, = —d-_/(;z Tcos2wl/}\mdl

A
0 .
=——tsinws /A ,.

—y (22)

B. The Longitudinal Current in the Discontinuity Plane

(Region 2): Assuming that the discontinuity region can
be represented by a shunt capacitance C, per unit length
subject to the voltage

V,=V,cosms/A,, (23)

we can imagine it as a parallel plate capacitor of plate
distance # and width / in the transverse direction

C,=¢yl/h.

The electric field strength in the capacitor is then

(24)

v
E =V, /h= 70008 7S/ N - (25)

The current in the top plate is

V,C
IL=—""Scosas/A\_.
t ,neo / ca

(26)

The total discontinuity current, taking into account both
halves of the cross section, is then

2V, wC,
IV nwe, Y'Ot .YE)ICOSWS/}\ca (27)
with
€ 1
Yo, =—-2—. 28
0t Ko b ( )

After some further modifications, this current becomes, for
a finite real A, in the longitudinal direction
I/OACG

W(BO/YO)COS 7S/ N

(29)

I,=

The expression for B, /Y, is prcsenied later in (34).

C. The Longitudinal Current in the Lateral Parts

(Region 3): In the lateral parts of the cross section, the
voltage variation in the transverse direction is
cosms/Ag,

rin= Vosin'rr(a -5)/A,

sin2al/A, (30)

where / is now the variable distance inward from the side
walls. The longitudinal current density in the top wall
becomes

Vycosms /A,
bysinw(a—s)/A,,

J(1)=

and the expression for longitudinal current is given by

I _2f(a—s)/2 Vocosms /A,
B 0 bysinm(a—s)/A,,

sin2ml/\,,  (31)

sin2xl /X, dl

= % cos(ms/A  )tan[7w(a—s)/27,,]. (32)
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Fig. 7. Characteristic impedance of unilateral fin-lines. b/a = 0.5, €, =
2.22 and 3, b/\ = 0.3556.
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Fig. 8. Characteristic impedance of bilateral fin-lines. b/a=0.5, ¢, =
222 and 3, b/A = 0.3556.

With the three components of the total longitudinal
current derived above, the characteristic impedance at in-
finite frequency is given by ‘

Z = 1207%(b/A,,)
ésin—w—s—+ —B—°+tan—7r~(a;s)]cos Ll
d A, | Y 2A, Aca
(33)
with
gL
Yoo Xeal” 2b 1+Qsin4(g%)

355

and
o=[1-@/ )] -1 (35)

The characteristic impedance Z; is computed using (33)
and (2). The value of s in (33) is set equal to zero in the
case of unilateral fin-line, and it is set equal to the sub-
strate thickness in the case of bilateral fin-line. Z is shown
in Figs. 7 and 8 for unilateral and bilateral fin lines as a
function of s/a for various values of d /b at b/A = 0.3556.
These values agree within +2 percent with Hofmann’s
results [12].

VIL

In the foregoing sections, we have presented expressions
for the evaluation of the cutoff wavelength, guided wave-
length, and characteristic impedance of unilateral and bi-
lateral fin-lines. These expressions are directly applicable
to the design of fin-line circuits. The expressions for the
cutoff wavelength agree within +1 percent and those of
guided wavelength agree within +2 percent with the re-
sults obtained with the spectral domain technique. These
expressions may look slightly complicated at a first glance,
but when applied to a practical problem, they reduce to a
very simple expression of the form y = AxB. This is so
because the designer initially fixes the thickness of the
substrate and chooses a given waveguide size, thus fixing
the values of b/a and s/a. The only remaining variable
parameter is then the normalized gap width d/b. The
expression for the characteristic impedance agrees also
within + 2 percent with the values given by Hofmann [12].
This definition of characteristic impedance is appropriate
in impedance matching problems and in the characteriza-
tion of discontinuities in fin-line structures [13].

REsuLTS AND CONCLUSIONS
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Short Papers

A Quasi-Optical Nulling Method for Material
Birefringence Measurements at Near-Millimeter
Wavelengths

GEORGE J. SIMONIS, MEMBER, IEEE

Abstract —A quasi-optical technique for the measurement of birefrin-
gence is demonstrated at 245 GHz. The technique is applied to crystal
quartz. The measured values are compared with values reported at nearby
frequencies. The technique is used to determine the difference between the
ordinary and extraordinary real indices of refraction directly, rather than
by deducing the difference from separate measurements of the two indices.
The technique is based on establisliing a transmission null, thus providing
appreciable sensitivity and precision for the measurement.

I. INTRODUCTION

In the infrared Wavelength range, many conventional optical
techmques are employed for materials characterization. In the
microwave région, fundamental mode waveguide and microwave
discrete-frequency sources are brought to bear on the problem
with the material of interest often completely filling a section of
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the waveguide. The near-millimeter-wave region (NMMW —ap-
proximately 94 to 1000 GHz) presents particular problems and
warrants somewhat specialized approaches. The wavelength is
large enough that diffraction effects can be a substantial per-
turbation to “optical” configurations. The wavelength is small
enough that the small waveguide is difficult to work with and to
uniformly fill with the sample material. An NMMW technique is
described here that employs a quasi-optical configuration to
measure sample birefringence directly, without first measuring
the magnitudes of the individual indices.

The radiation source is a CO,-laser-pumped metal-wavegnide
C'""H,F laser 2 m long emitting at 1.222-mm wavelength (245
GHz). The average power available is much less than 1 mW, but
is quite sufficient to provide a good signal-to-noise ratio for the
measurements. Such sources typically undergo substantial ampli-
tude fluctuations, but have good frequency stability, operating
within a few megahertz of the gain line center of the lasing gas.
The optics and sample dimensions are kept greater than 1 in in
clear aperature in order to reduce diffraction effects. The source
and experiment are isolated in thls work by an absorption “pad”
in the optical path.

The critical elements in the configuration are wire grating
polarizers made at Harry Diamond Laboratories. They are made
using a machine shop lathe in an approach [1] similar in some
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